On graph classes with logarithmic boolean-width
نویسندگان
چکیده
Boolean-width is a recently introduced graph parameter. Many problems are fixed parameter tractable when parametrized by boolean-width, for instance "Minimum Weighted Dominating Set" (MWDS) problem can be solved in O∗(23k) time given a boolean-decomposition of width k, hence for all graph classes where a boolean-decomposition of width O(log n) can be found in polynomial time, MWDS can be solved in polynomial time. We study graph classes having boolean-width O(log n) and problems solvable in O∗(2O(k)), combining these two results to design polynomial algorithms. We show that for trapezoid graphs, circular permutation graphs, convex graphs, Dilworth-k graphs, circular arc graphs and complements of k-degenerate graphs, boolean-decompositions of width O(log n) can be found in polynomial time. We also show that circular k-trapezoid graphs have boolean-width O(log n), and find such a decomposition if a circular k-trapezoid intersection model is given. For many of the graph classes we also prove that they contain graphs of boolean-width Θ(log n). Further we apply the results from [1] to give a new polynomial time algorithm solving all vertex partitioning problems introduced by Proskurowski and Telle [23]. This extends previous results by Kratochvíl, Manuel and Miller [14] showing that a large subset of the vertex partitioning problems are polynomial solvable on interval graphs.
منابع مشابه
Graph Classes with Structured Neighborhoods and Algorithmic Applications
Boolean-width is a recently introduced graph width parameter. If a boolean decomposition of width w is given, several NP-complete problems, such as Maximum Weight Independent Set, k-Coloring and Minimum Weight Dominating Set are solvable in O∗(2O(w)) time [5]. In this paper we study graph classes for which we can compute a decomposition of logarithmic boolean-width in polynomial time. Since 2 =...
متن کاملFast algorithms for vertex subset and vertex partitioning problems on graphs of low boolean-width⋆
We consider the graph parameter boolean-width, related to the number of different unions of neighborhoods across a cut of a graph. Boolean-width is similar to rankwidth, which is related to the number of GF [2]-sums (1+1=0) of neighborhoods instead of the Boolean-sums (1+1=1) used for boolean-width. It compares well to the other four well-known width parameters tree-width, branch-width, clique-...
متن کاملUpper Bounds on Boolean-Width with Applications to Exact Algorithms
Boolean-width is similar to clique-width, rank-width and NLC-width in that all these graph parameters are constantly bounded on the same classes of graphs. In many classes where these parameters are not constantly bounded, boolean-width is distinguished by its much lower value, such as in permutation graphs and interval graphs where boolean-width was shown to be O(logn) [1]. Together with FPT a...
متن کاملFinding Good Decompositions for Dynamic Programming on Dense Graphs
It is well-known that for graphs with high edge density the tree-width is always high while the clique-width can be low. Boolean-width is a new parameter that is never higher than tree-width or clique-width and can in fact be as small as logarithmic in clique-width. Boolean-width is defined using a decomposition tree by evaluating the number of neighborhoods across the resulting cuts of the gra...
متن کاملCompact Labelings For Efficient First-Order Model-Checking
We consider graph properties that can be checked from labels, i.e., bit sequences, of logarithmic length attached to vertices. We prove that there exists such a labeling for checking a first-order formula with free set variables in the graphs of every class that is nicely locally clique-width-decomposable. This notion generalizes that of a nicely locally tree-decomposable class. The graphs of s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1009.0216 شماره
صفحات -
تاریخ انتشار 2010